

**HYDROGEN IONS AND ACIDITY** 

# **Section Review**

# Objectives

- Classify a solution as neutral, acidic, or basic, given the hydrogen-ion or hydroxide-ion concentration
- Convert hydrogen-ion concentrations into values of pH and hydroxide-ion concentrations into values of pOH
- Describe the purpose of pH indicators

#### Vocabulary

- self-ionization
- neutral solution
- ion-product constant for water  $(K_w)$

• acidic solution

- basic solution
- alkaline solutions
- pH

# **Key Equations**

- $K_{\rm w} = [{\rm H}^+] \times [{\rm OH}^-] = 1.0 \times 10^{-14} M^2$
- $pH = -\log [H^+]$

- $pOH = -\log [OH^-]$
- pH + pOH = 14

### **Part A Completion**

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

| Water molecules can $\_\_1$ to form hydrogen ions (H <sup>+</sup> ) and     | 1  |
|-----------------------------------------------------------------------------|----|
| hydroxide ions (OH <sup>-</sup> ). The concentrations of these ions in pure | 2  |
| water at 25°C are both equal to $\underline{2}$ mol/L.                      | 3  |
| The pH scale, which has a range from <u>3</u> , is used to                  | 4  |
| denote the <u>4</u> concentration of a solution. On this scale, 0 is        | 5  |
| strongly <u>5</u> , 14 is strongly <u>6</u> , and 7 is <u>7</u> . Pure      | 6  |
| water at 25°C has a pH of <u>8</u> .                                        | 7  |
| The <u>9</u> constant for water has a value of $1.0 \times 10^{-14}$ .      | 8  |
| Thus, the product of the concentrations of <u>10</u> ions and               | 9  |
| ions in aqueous solution will always equal $1.0 \times 10^{-14}$ .          | 10 |
|                                                                             | 11 |

#### Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

| 1  | <b>2.</b> In an acidic solution, $[H^+]$ is greater than $[OH^-]$ .                          |
|----|----------------------------------------------------------------------------------------------|
| 1  | <b>3.</b> pH indicators can give accurate pH readings for solutions.                         |
| 1  | <b>1.</b> If the $[H^+]$ in a solution increases, the $[OH^-]$ must decrease.                |
| 1  | 5. The $[OH^-]$ is less than $10^{-7}M$ in a basic solution.                                 |
| 10 | <b>5.</b> The definition of pH is the negative logarithm of the hydroxide-ion concentration. |

#### Part C Matching

Match each description in Column B to the correct term in Column A.

|     | Column A                               |    | Column B                                                           |
|-----|----------------------------------------|----|--------------------------------------------------------------------|
| 17. | alkaline solutions a                   | a. | aqueous solution in which $[H^+]$ and $[OH^-]$ are equal           |
| 18. | pH b                                   | ). | product of hydrogen ion and hydroxide ion concentrations for water |
| 19. | self-ionization                        | c. | base solutions                                                     |
| 20. | neutral solution                       | 1. | solution in which $[H^+]$ is less than $[OH^-]$                    |
| 21. | ion-product constant for water $(K_w)$ | e. | reaction in which two water molecules produce ions                 |
| 22. | acidic solution                        | f. | the negative logarithm of the hydrogen-ion concentration           |
| 23. | basic solution g                       | g. | solution in which $[H^+]$ is greater than $[OH^-]$                 |

# Part D Problems

Answer the following in the space provided.

- **24.** Calculate the hydroxide-ion concentration,  $[OH^-]$ , for an aqueous solution in which  $[H^+]$  is  $1 \times 10^{-10}$  mol/L. Is this solution acidic, basic, or neutral?
- 25. Determine the hydrogen-ion concentrations for aqueous solutions that have the following pH values. **b.** 6

**a.** 3